Prelude: The Data Assimilation Problem:

Given 1. A physical system (atmosphere, ocean...)

2. Observations of the physical system

Usually sparse and irregular in time and space.

Instruments have error of which we have a (poor) estimate.

Observations may be of ‘non-state’ quantities.

Many observations may have very low information content.

3. A model of the physical system

Anderson: Ensemble Tutorial

Usually thought of as approximating time evolution.

Could also be just a model of balance (attractor) relations.
Truncated representation of ‘continuous’ physical system.
Often quasi-regular discretization in space and/or time.
Generally characterized by ‘large’ systematic errors.

May be ergodic with some sort of ‘attractor’.
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We want to increase our information about all three pieces:

1. Get an improved estimate of state of physical system

Includes time evolution and ‘balances’.
Initial conditions for forecasts.
High quality analyses (re-analyses).

2. Get better estimates of observing system error characteristics

Estimate value of existing observations.
Design observing systems that provide increased information,

3. Improve model of physical system

Evaluate model systematic errors.
Select appropriate values for model parameters.
Evaluate relative characteristics of different models.
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Towards a General, Btéble Assimilation Rcility

Goals:

1. Assimilation that works with variety of models and obs. types.
2. Coding for system must be easy to implement (weeks max.).
(This appears to rule out variational methods at present).

3. Must allow complicated forward operators.

4. GOOD assimilation results for novice users.
EXCELLENT results with added expertise/development.

5. GOOD performance on variety of platforms with little effort.
EXCELLENT performance with added expertise/development.
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The Data Assimilation Researchsibed (IART)

A. Combine assimilation algorithms, models, and observation sets.
B. Diagnostic tools for assimilation experimentation.
C. Compliant models and observation sets (real and synthetic).

D. A high-quality, generic ensemble filtering algorithm.NCAR Data

(( Model1 ) DART Filter |Obs. Set1 |
( Model 2 )/ ; \‘ Obs. Set 2 ‘
; Diagnostic V
( Model n ) Tools ‘ Obs. Setn ‘

Assimilation Initiative
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Ensemble Filters for Geoghical Data Assimilation: A dtorial

Jeffrey Anderson
NCAR Data Assimilation Initiative

Obijective: Provide a simple but clear introduction to ensemble filters.

Phase 1: Single variable and observation of that variable.
Phase 2: Single observed variable, single unobserved variable.
Phase 3: Generalize to geophysical models and observations.

Phase 4: Quick look at a real atmospheric application.
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P(BIAC)p(AIC) _ p(B[AC)p(A C)
p(B| C) [P(B[x)p(x| C)dx

Bayes rulep(A/ BC) =
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A:. Prior estimate based on all greus information, C.
B: An additional observation.
P(A| BC): Posterior (updated estimate) based on C and B.
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P(B|AC)P(AIC) _ pP(B|ACQ)P(AIC)
p(B| C) [P(B[x)p(x| C)dx

Bayes rulep(A/ BC) =
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8 : : : : :
O 0.4t M NG e N
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A: Prior estimate based on all previous information, C.
B: An additional obsetion.
P(A| BC): Posterior (updated estimate) based on C and B.
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P(BJAC)P(AIC) _ pP(BJACQ)P(AIC)
p(B| C) [P(B[x)p(x| C)dx

Bayes rulep(A/ BC) =

0.2f - PROFPDFf i N b
B\ § Obs. leellhOOd
5 0150 e e SR N o
8 : : : : :
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A: Prior estimate based on all previous information, C.
B: An additional observation.
P(A| BC): Posterior (updated estimate) based on C and B.
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P(B[AQP(AC) _ p(BAC)p(A|C)
p(B| C) [P(B[x)p(x| C)dx

Bayes rulep(A/ BC) =

0.2} Prior PDF/ N\ e L

B\ Obs. leellhOOd

Z 0150 o S Lo N\ s
8 : ; z z z

S 0.Af o N N\
D- : ' ' _

0.05p 7 d Normalization (Denomty_ N\ '

C — -2 0 2 4 6

A: Prior estimate based on all previous information, C.
B: An additional observation.
P(A| BC): Posterior (updated estimate) based on C and B.
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P(B[AQP(AC) _ p(B|AC)p(A|C)
p(B| C) [P(B[x)p(x| C)dx

Bayes rulep(A/ BC) =

Posterlor
0.2 Prior PDF/ A i
2> \Obs. leellhood
Z0450 Sy [ ; N T —
o 1 z z ;
SNV | SERRSRS SN S § NP SRS . Ve VO W Rrems
D- : 3 3
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% -4 -2 0 2 4 6

A: Prior estimate based on all previous information, C.
B: An additional observation.
P(A| BC): Posterior (updated estimate) based on C and B.
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Consistent Color Scheme Throughoutdrial

Green = Prior

Red = Obsewation

Blue = Rosterior
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. _ P(BIACQP(AIC) _ p(B[AC)P(AC)
Bayes rule;p(A| BC) o(B| ) [P(BIX)P(x] C)dX

This product is closed for Gaussian distributions.
0.6

........................................................................................
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O
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. _ P(B[AQP(AIC) _ p(B[AC)p(A C)
Bayes rule;p(A| BC) o(B| ) [P(BIX)P(x] C)dX

This product is closed for Gaussian distributions.

0.6 , - :
;Posterlor PDFH
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5 or P
P Prior P;D
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I
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Product of tvoa Gaussians:

Product of d-dimensional normals with meagsandp, and
covariance matrices, andz, is normal.

N(H1 21)N(Hg, 25) = CN(W, 2)
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Product of tvoa Gaussians:

Product of d-dimensional normals with meagsandp, and
covariance matrices, andz, is normal.

N(up 21)N(Hp 25) = SN(H, 2)

Covariance: ¥ = (Z7t+Z7h)-

Mean: L= (I + SH A (E g, + Z51)
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Product of tvoa Gaussians:

Product of d-dimensional normals with meagsandp, and
covariance matrices, andz, is normal.

N(up 21)N(Hp 25) = SN(H, 2)

Covariance: ¥ = (Z7t+Z7h)-
Mean: h = (Zil + Zil)_l(zilul + Zill‘J'Z)

_ 1
(2|‘|)d/2‘21 +

_— 01 _ U
Weight: ¢ 1/2expm—§[(u2—u1)T(Zl+Zg) Yy -1yl
Zz\ L] []

We’'ll ignore the weight unless noted since we immediately normalize
products to be PDFs.
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Product of tvoa Gaussians:

Product of d-dimensional normals with meagsandp, and
covariance matrices, andz, is normal.

N(up 21)N(Hp 25) = SN(H, 2)

Covariance: ¥ = (Z7t+Z7h)-

Mean: L= (I + SH A (E g, + Z51)
L ~ 1 01 _ U
Weight: ¢ = (2I'I)d/2‘21 " 22‘ 1/26Xp%1—§[(|12_ H1)T(Zl +3,) 1(“2_ Hy)] E

Easy to derive for 1-D Gaussians; just do products of exponentials.
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P(B|AC)P(AIC) _ pP(B|ACQ)P(AIC)

Bayes rulep(A/ BC) =

p(B| C) [P(B[x)p(x| C)dx
Ensemble filtersPrior is aailable as finite sample.
0.6
S 04F
O
©
O
@)
Q0 Q.2
Prior Ensemble
0 ¥* ¥ * XK i
—4 -2 0 2 4
Don’t know much about properties of this sample.

May naively assume it is random draw from ‘truth’.
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. _ P(B[AQP(AIC) _ p(B[AC)p(A C)
Bayes rule;p(A| BC) o(B| ) [P(BIX)P(x] C)dX

How can we take product of sample with continuous likelihood?
0.6

B0 4 RS F R
Q -

c Prior PD

S _

O Q.2 AR

éPrior Ensembie
0 ¥ ¥ ¥ 9H6

—4 -2 0 2 4
Fit a continuous (Gaussian for now) distribution to sample.
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. _ P(B[AQP(AIC) _ p(B[AC)p(A C)
Bayes rulep(A| BC) 5(B|C) [P(BIX)P(x] C)dX

Observation likelihood usually continuous (nearly always Gaussian).
0.6

........................................................................................

=
N

Prior PD

Probability

O
N

éPrior Ense

-4 -2 4
If Obs. Likelihood isn’'t Gaussian, can generalize methods below.
For instance, can fit set of Gaussian kernels to obs. likelihood.
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. _ P(B[AQP(AIC) _ p(B[AC)p(A C)
Bayes rulep(A| BC) 5(B|C) [P(BIX)P(x] C)dX

Product of prior Gaussian fit and Obs. likelihood is Gaussian.
0.6

Posterior PD!

=
N

Prior PD

Probability

O
N

Computing continuous posterior is simple.
BUT, need to have a SAMPLE of this PDF.
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Sampling Posterior PDF:

There are many ways to do this.

0.6 ! ] I T
Posterior PDF, f
Z04f N
o)
@
O
o
E 02 .............................................................................................................................
-2 -1 0 1 2 3

Exact properties of different methods may be unclear.
Trial and error still best way to see how they perform.
Will interact with properties of prediction models, etc.
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Ensemble Filter Algorithms:

3. Ensemble Adjustment (Kalman) Filter.

0.6
QA B e e
o)
S
i ®)
@)
S
Prior Ensemble
; KKK g |
-4 -2 0 2 4
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Ensemble Filter Algorithms:

3. Ensemble Adjustment (Kalman) Filter.

0.6
QLA
2 o
B Prior P;D
Q _

. L e
Prior Ensemble
; KKK g ;
-4 -2 0 2 4

Again, fit a Gaussian to sample.
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Ensemble Filter Algorithms:

3. Ensemble Adjustment (Kalman) Filter.

0.6 ! ] I
;Posterlor PDF
204
2 or B
B Prior P;D
o _
A Q.2 e S
0
-4

Compute posterior PDF (same as previous algorithms).
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Ensemble Filter Algorithms:

3. Ensemble Adjustment (Kalman) Filter.

0.6 ! ] I
Posterior PD
B Q.4 e N
o)
©
@)
O
O QL2 s N
-4 -2 0 2 4

Use deterministic algorithm to ‘adjust’ ensemble.
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Ensemble Filter Algorithms:

3. Ensemble Adjustment (Kalman) Filter.

0.6 ! ] I
Posterior PD
B Q.4 e N
O
i
8 § :
a 0.2 Mean Shifted - e\ s 1
O 1 . L
-4 -2 0 2 4

Use deterministic algorithm to ‘adjust’ ensemble.
First, ‘shift’ ensemble to have exact mean of posterior.
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Ensemble Filter Algorithms:

3. Ensemble Adjustment (Kalman) Filter.

0.6 ! ] I T
Posterior PDF f

B Q.4 e N :
o . . |
o Variance Adjusted
@) _ ™ Sy

qa 0.2p Mean-S-hlft-e; ------------------- ------------------------------- 1
‘/»V | \
O 1 1 ]

-4 =2 0 2 4

Use deterministic algorithm to ‘adjust’ ensemble.
First, ‘shift’ ensemble to have exact mean of posterior.
Second, use linear contraction to have exact variance of posterior.
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Ensemble Filter Algorithms:

3. Ensemble Adjustment (Kalman) Filter.

0.6 ! ] I
Posterior PDF
204l
Q . . ;
. Variance Adjusted
O ; , W\ ;
qa 0.2p Mean--S-hlft-e-; ------------------- ------------------------------- 1
/ T \
O 1 1 ]
-4 =2 0 2 4

x: = (xX*=xP)Qo"/6) +x" i=1,.., ensemble size.
p is prior,  uis update (posterior), overbar is ensemble mean,
o is standard deviation.
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Ensemble Filter Algorithms:

3. Ensemble Adjustment (Kalman) Filter.

0.6 ! ] I
Posterior PDF
204l
Q . . ;
. Variance Adjusted
O ; , W\ ;
qa 0.2p Mean--S-hlft-e-; ------------------- ------------------------------- 1
/ T \
O 1 1 ]
-4 =2 0 2 4

Bimodality maintained, but not appropriately positioned or weighted.
No problem with random outliers.
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Phase 2: Single obs@&w \ariable, single unobsezd \ariable

So far, have known observation likelihood for single variable.
Now, suppose prior has an additional variable.

Will examine how ensemble methods update additional variable.
Basic method generalizes to any number of additional variables.

Methods related to Kalman filter in some sense, but not done here.
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Ensemble filters: Updating additional prior state variables

Unobserved State Variable

5
o ¥*
| S R —
o1 x ¥
At
o ¥
1| ST PR S S
% . 3 * ¥ %*
-2 0 2 4

Observed Variable
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Assume that all we know
IS prior joint distribution.

One variable is observed.

What should happen to
unobserved variable?
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Ensemble filters: Updating additional prior state variables

Assume that all we know

. § . .

%4.2 T S * | is prior joint distribution.

£35 ~ -

3 * One variable is observed.
| Update observed
variable with one of
| previous methods.
3 ¥ ¥
2 0 2 4

Observed Variable
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Ensemble filters: Updating additional prior state variables

. | Assume that all we know
E | | % % * | is prior joint distribution.

Unobs.

W B
WUIRUIUT

One variable Is observed.

| Update observed
variable with one of
| previous methods.

2 0 2 4
Observed Variable
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Ensemble filters: Updating additional prior state variables

. | Assume that all we know
E | | % % * | is prior joint distribution.

Unobs.

W B
WUIRUIUT

One variable Is observed.

| Update observed
variable with one of
| previous methods.

2 0 2 4
Observed Variable
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Ensemble filters: Updating additional prior state variables

Assume that all we know

9 4.2 | % % IS prior joint distribution.
S
5 3.5 | | |
3 * i One variable is observed.
*%k * %
| Compute increments for
prior ensemble members
{ of observed variable.
Increments

2 0 2 4
Observed Variable
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Ensemble filters: Updating additional prior state variables

Assume that all we know

9 4.2 | % % IS prior joint distribution.
S
5 3.5 | | |
3 * i One variable is observed.
*%k * %
| Compute increments for
prior ensemble members
{ of observed variable.
Increments

2 0 2 4
Observed Variable
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Ensemble filters: Updating additional prior state variables

Assume that all we know

9 4.2 | % % IS prior joint distribution.
S
5 3.5 | | |
3 * i One variable is observed.
*%k * %
| Compute increments for
prior ensemble members
{ of observed variable.
Increments

2 0 2 4
Observed Variable
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Ensemble filters: Updating additional prior state variables

Assume that all we know

0 4% | | * | is prior joint distribution
O 4 e T
| | One variable Is observed.
*xk *  *
| Compute increments for
, | prior ensemble members
{ of observed variable.
Increments

2 0 2 4
Observed Variable
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Ensemble filters: Updating additional prior state variables

Assume that all we know

%4.2% T S * | is prior joint distribution.
£ 35 |
- '3 * i One variable is observed.
KRk ok
| Compute increments for
, | prior ensemble members
1 of observed variable.
Increments

2 0 2 4
Observed Variable
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Ensemble filters: Updating additional prior state variables

Assume that all we know
IS prior joint distribution.

W A

Unobs.

WO1RO101
£ FW¥
%*
%*
%*
%*

One variable is observed.

| Using only increments

% | guarantees that if

| observation had no

e * Impact on observed

Increments 1 variable, unobserved
_ variable is unchanged

1 (highly desirable).

¥ %

2 0 2 4
Observed Variable
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Ensemble filters: Updating additional prior state variables

Unobserved State Variable

%

Ichem'ents *;* S
e ———% *

—2 0 2 4

Observed Variable

Anderson: Ensemble Tutorial 42

Assume that all we know
IS prior joint distribution.

How should the
unobserved variable be
Impacted?

First choice: least squares

Equivalent to linear
regression.

| Same as assuming

binormal prior.
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Ensemble filters: Updating additional prior state variables

5— . | Have joint prior
distribution of two
variables.

How should the
unobserved variable be
Impacted?

First choice: least squares

Unobserved State Variable
AN

Begin by findingeast

31*' . *

: : squares fit.
Increments  #*—% S '
% " % ue* " ]
-2 0 2 4

Observed Variable
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Ensemble filters: Updating additional prior state variables

5 | | Have joint prior
distribution of two
variables.

Next, regress the
observed variable
Increments onto
Increments for the
unobserved variable.

Unobserved State Variable
AN

Equivalent to first finding
Image of increment in

1 % i
Ichemints —* ** | joint space.
-2 0 2 4
Observed Variable

Anderson: Ensemble Tutorial 44 4/22/05



Ensemble filters: Updating additional prior state variables

5 | | Have joint prior
distribution of two
variables.

Next, regress the
observed variable
Increments onto
Increments for the
unobserved variable.

Unobserved State Variable
AN

Equivalent to first finding
Image of increment in

1 % i
Ichemints =« ** | joint space.
-2 0 2 4
Observed Variable
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Ensemble filters: Updating additional prior state variables

5 | | Have joint prior
distribution of two
variables.

Next, regress the
observed variable
Increments onto
Increments for the
unobserved variable.

Unobserved State Variable
AN

Equivalent to first finding
Image of increment in

1 % i
Ichemints —*_ ** | joint space.
-2 0 2 4
Observed Variable
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Ensemble filters: Updating additional prior state variables

5 | | Have joint prior
distribution of two
variables.

Next, regress the
observed variable
Increments onto
Increments for the
unobserved variable.

Unobserved State Variable
AN

Equivalent to first finding
Image of increment in

1 % i
Ichemints —* ** | joint space.
-2 0 2 4
Observed Variable
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Ensemble filters: Updating additional prior state variables

5 | | Have joint prior
distribution of two
variables.

Next, regress the
observed variable
Increments onto
Increments for the
unobserved variable.

Unobserved State Variable
AN

Equivalent to first finding
Image of increment in

1 —% i
Ichemints —* ** | joint space.
-2 0 2 4
Observed Variable
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Ensemble filters: Updating additional prior state variables

Have joint prior
distribution of two
variables.

Regression: Equivalentto
first finding image of
Increment in joint space.

Then projecting from
joint space onto
unobserved priors.

Unobserved State Variable

3* : :
pcrements —* . * | Finally, multiply by prior
) O* 2* 4 Sample correlation.

Observed Variable
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Ensemble filters: Updating additional prior state variables

Have joint prior
distribution of two
variables.

Regression: Equivalentto
first finding image of
Increment in joint space.

Then projecting from
joint space onto
unobserved priors.

Unobserved State Variable

3* : :
pcrements —* . * | Finally, multiply by prior
) Oale 2* 4 Sample correlation.

Observed Variable
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Ensemble filters: Updating additional prior state variables

Have joint prior
distribution of two
variables.

Regression: Equivalentto
first finding image of
Increment in joint space.

Then projecting from
joint space onto
unobserved priors.

Unobserved State Variable

3* : :
pcrements —* . * | Finally, multiply by prior
) Oale 2* 4 Sample correlation.

Observed Variable
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Ensemble filters: Updating additional prior state variables

Have joint prior
distribution of two
variables.

Regression: Equivalentto
first finding image of
Increment in joint space.

Then projecting from
joint space onto
unobserved priors.

Unobserved State Variable

3* : :
pcrements —* | Finally, multiply by prior
) Oale 2* 4 Sample correlation.

Observed Variable
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Ensemble filters: Updating additional prior state variables

Have joint prior
distribution of two
variables.

Regression: Equivalentto
first finding image of
Increment in joint space.

Then projecting from
joint space onto
unobserved priors.

Unobserved State Variable

3* : :
pcrements —* . * | Finally, multiply by prior
) Oale 2* 4 Sample correlation.

Observed Variable
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Ensemble filters: Updating additional prior state variables

Now have an updated

)
% | (posterior) ensemble for
S x ¥ | the unobserved variable.
S * e
~ 4.5 -
&)
S X \
n 4 |
S | x 4
(b
c !
? 3.5 * o
@) ‘
: !
5 L
-20 24

Obs.
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Ensemble filters: Updating additional prior state variables

Now have an updated

)
% | (posterior) ensemble for
© x ¥ | the unobserved variable.
S 4.5 : |
Q : Fitting Gaussians shows
it | that mean and variance
2 4'* l[ | have changed.
> |
235 * It
O Prior State Fit |
Dl 4

3 oy

-2024

Obs.
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Ensemble filters: Updating additional prior state variables

| | Now have an updated
Posterior Fit | | (posterior) ensemble for
| the unobserved variable.

Ol

P
ol

Fitting Gaussians shows
| that mean and variance
- 4| | have changed.

| Other features of the

Unobserved State Variable
D

3.5 -
Prior State Eit | prior distribution may
l also have changed.
3
e
2024

Obs.
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Ensemble filters: Updating additional prior state variables

CRITICAL POINT:

> _Posterior Fit, |
* ¥ | Since impact on
4.5 : | unobserved variable is
. simply a linear

| regression, can do this
' 1 | INDEPENDENTLY for
| any number of

| unobserved variables!

o
CL

Prior State Fit |
:L Could also do many at

- once using matrix
*ﬁ:’g algebra as in traditional
2024 Kalman Filter.

Obs.

Unobserved State Variable
D

w
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Ensemble filters: Updating additional prior state variables
Two primary error sources:

1. Linear approximation is invalid.
Substantial nonlinearity in ‘true’ relation over range of prior.

2. Sampling error due to noise.
Even if linear relation, sample regression coefficient imprecise.

May need to address both issues for good performance.
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Regression sampling error and filter divergence

_ _ _ _ Suppose unobserved
I\SADN;%_Sl% state variable is known to
o ] be unrelated to set of
observed variables.

Qo

N

e

Unobserved variable
| should remain
~1 | | unchanged.

Unobserved State Variable
o

-2 0 2
Observed Variable
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Regression sampling error and filter divergence

3 Sp-has

¥

Unobserved State Variable

MN=0.12
* ok

Anderson: Ensemble Tutorial

After Obs. 1
* %

e

Sample Correl. = 0.49

e

-2 0 2
Observed Variable

60

Suppose unobserved
state variable is known to

1 be unrelated to set of

observed variables.

Finite samples from joint

| distribution will have
| non-zero correlation

(expected |corr| = 0.19

| for 20 samples).

After one observation,

1 unobs. variable mean and

S.D. change.
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Regression sampling error and filter divergence

N w
<Wn
i

o

Unobserved State Variable
(@)
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After Obs. 21

Sample Correl. = -0.24

—2 0 2

Observed Variable
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Suppose unobserved
state variable is known to

1 be unrelated to set of

observed variables.

Unobserved variable

| should remain unchanged

Unobserved mean
| follows arandom walk as

more obs. are used.
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Regression sampling error and filter divergence

After Obs. 41

N W
2
i
O
o¢]
o

AFek
* *

Il o ek

B gk k *

Unobserved State Variable
(@)

Sample Correl. = 0.01

| e

-2 0 2
Observed Variable
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Suppose unobserved
state variable is known to

1 be unrelated to set of

observed variables.

Unobserved variable

| should remain unchanged

| Unobserved standard
| deviation is persistently

decreased.

i Expected change in |SD|

IS negative for any non-
zero sample correlation!
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Regression sampling error and filter divergence

Suppose unobserved

| Unobserved standard
| deviation is persistently
decreased.

3 — S—
o SD=0.88 | After Obs. 61 state variable is known to
8 2t 1 be unrelated to set of

= .

g . . % observed variables.

2 * * % .

s * ok, * Unobserved variable

N 0 s . |

- R * should remain unchanged
>

(D)

7))

@)

e

c

D

Sample Correl. = 0.26

ﬁ*m * i Expected change in |SD|

_2 0 5 IS negative for any non-
Observed Variable Z€ro sample correlation!
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Regression sampling error and filter divergence

After Obs. 81

N W
3
2
i
o
o¢]
o

ale,,gkale

****gl* I

Unobserved State Variable
(@)

Sample Correl. = 0.25

frmmmme s |
—

-2 0 2
Observed Variable
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Suppose unobserved
state variable is known to

1 be unrelated to set of

observed variables.

Unobserved variable

| should remain unchanged

| Unobserved standard
| deviation is persistently

decreased.

i Expected change in |SD|

IS negative for any non-
zero sample correlation!
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Regression sampling error and filter divergence

After Obs.” 101

N W
k3
n
i
o
o¢]
o

¥

Unobserved State Variable
(@)

Sample Correl. = -0.29

oo

-2 0 2
Observed Variable
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Suppose unobserved
state variable is known to

1 be unrelated to set of

observed variables.

Estimates of unobs.

| become too confident

| Give progressively less
I weight to any meaningful

observations.

1 End result can be that

meaningful obs. are
essentially ignored.
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Regression sampling error and filter divergence

Plot shows expected
absolute value of sample
: correlation vs. true
"""""""""""""""""""" o e correlation.

 —

O
o

Errors decrease with
sample size and for large
Ireal correlations].

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

O
o))

o
~

Expected [Sample Correlation|

10 Members
02k—A 20 Members |
40 Members
0 _ 80 Members
0 0.5 1

True Correlation
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Ways to deal with igression sampling error:

1. Ignore it: if number of unrelated observations is small
and there is some way of maintaining variance in priors.

2. Use larger ensembles to limit sampling error.

3. Use additional a priori information about relation between
observations and state variables.

4. Try to determine the amount of sampling error and correct for it.
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Ways to deal with igression sampling error:

3. Use additional a priori information about relation between
observations and state variables.

1

Regression Weight
o
O1

—2%00 —1000 0 1000 2000
. Distance from Observation (Km?)
Atmospheric assimilation problems.

Weight regression as function of horizordatancefrom observation.
Gaspari-Cohn: 5th order compactly supported polynomial.
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Ways to deal with igression sampling error:

3. Use additional a priori information about relation between
observations and state variables.

1

Regression Weight
o
O1

—2%00 —1000 0 1000 2000
Distance from Observation (Km?)
Can use other functions to weight regression.

Unclear whatlistancemeans for some obs./state variable pairs.
Referred to aEOCALIZATION.
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Ways to deal with igression sampling error:

4. Try to determine the amount of sampling error and correct for it:

A. Could weight regressions based on sample correlation.
Limited success in tests.
For small true correlations, can still get large sample correl.

B. Do bootstrap with sample correlation to measure sampling errol
Limited success.
Repeatedly compute sample correlation with a sample removed

C. Use hierarchical Monte Carlo.

Have a ‘sample’ of samples.
Compute expected error in regression coefficients and weight.
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Ways to deal with igression sampling error:
4C. Use hierarchical Monte Carlo: ensemble of ensembles.

Split ensemble into M independent groups.
For instance, 80 ensemble members becomes 4 groups of 20.

With M groups get M estimates of regression coefficignt,

Find regression confidence facto(weight) that minimizes:

M M 5
> > [O‘Bi—Bj]
j=1 i=11i#]

Minimizes RMS error in the regression (and state increments).
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Ways to deal with igression sampling error:

4C. Use hierarchical Monte Carlo: ensemble of ensembles.

1 ‘
= Group Size 2 . .
0.0} croupsize4 1| \Weight regression bg.
= Group Size 8
S 0.8f = =+ Group Size 16 |
O
8 07 If one has repeated
8 06 observations, can
g o3 generate sample mean or
S ol median statistics fan.
ke
@ 0.3
g 02 Meana can be used in
o1 subsequent assimilations
, tveea, as a localization.
0 1 3 4

Q: Ratio of sample standard deviation to mean

a is function of M andQ = ZB/B (sample SD /sample mean regression)
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Phase 3: Generalize to gegpltal models and obse&twons

Dynamical system governed by (stochastic) Difference Equation:

dxt = f(xt, t) + G(xt, t)dBt, t=>0 (1)
Observations at discrete times:
yk:h(xk,tk)+vk; k=1 2 ...; e+ 1> 2ty (2)

Observational error white in time and Gaussian (nice, not essential).

Vi — N(O,Ry) (3)
Complete history of observations is:

Yo =4y 41 (4)
Goal: Find probability distrilstion for state at time t:

p(x 1] Y}) (5)
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Phase 3: Generalize to gegpltal models and obse&twons

State between observation times obtained from Difference Equation.
Need to update state given new observation:

p(X tk‘Ytk) = p(x, tk‘yk’ Ytk—l) (6)
Apply Bayes rule:
LY. ) = p(yk‘xk,Y )p(X, tk‘Ytk . -
k‘ 2 p(yk‘Ytk .
Noise is white in time (3) so:
p(yk‘xk, Ytk—l) = p(yk‘xk) (8)

Integrate numerator to get normalizing denominator:

PO Ve, 07 [ POKPIPO §Yy Jdx (©)
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Phase 3: Generalize to gegpltal models and obse&twons

Probability after new observation:
p(yk‘x) p(x t ‘Y

t
%’ K| Y tkD Ip(y &Pty | Yy E

(10)

Exactly analogous to earlier derivation except that x and y are vectors.

EXCEPT, no guarantee we have prior sample for each observation.

SO, let's make sure we have priors by ‘extending’ state vector.
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Phase 3: Generalize to gegpltal models and obse&twons

Extending the state vector to joint state-observation vector.

Recall: Yy = h(xk, tk) V) k=1 2 ... tk+ 1>tk2t0 (2)

Applying h to x at a given time gives expected values of observations.
Get prior sample of obs. by applying h to each sample of state vector x.

Let z = [X, y] be the combined vector of state and observations.
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Phase 3: Generalize to gegpltal models and obse&twons

NOW, we have a prior for each observation:

p(yk‘z) p(Z, tk‘ tk
Vg = _
P %Y, 0 J'p(yk\é)p(&tk\Ytk_l

(10.ext)
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Phase 3: Generalize to gegpltal models and obse&twons

One more issue: how to deal with many observations in8ety

Let vy, be composed of s subsets of observatiogg: = {y&, yﬁ, yi}

Observational errors for obs. in set | independent of those In set |.

Then:p(y(2) - 1 P(%(2
=1

Can rewrite (10.ext) as series of products and normalizations.
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Phase 3: Generalize to gegpltal models and obse&twons

One more issue: how to deal with many observations in8et y

Implication: can assimilate observation subsets sequentially.

If subsets are scalar (individual obs. have mutually independent error
distributions), can assimilate each observation sequentially.

If not, have two options:
1. Repeat everything above with matrix algebra.

2. Do singular value decomposition; diagonalize obs. error covariance
Assimilate observations sequentially in rotated space.
Rotate result back to original space.

Good news: Most geophysical obs. have independent errors!
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How an Ensemble Filter Wks for Geopiasical Data Assimilation

1. Use model to advanessembl€3 members here)
to time at which next observation becomes available.

Ensemble state Ensemble state at
estimate after using time of next obser-
previous observation vation (orior).

(analysi3. /

/ *
N By
*
t i1
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How an Ensemble Filter Wks for Geopiasical Data Assimilation

2. Get prior ensemble sample of observation, y=h(x), by
applying forward operator h to each ensemble member.

y Theory: observations’

from instruments with
uncorrelated errors can
\be done sequentially.)

*
*
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How an Ensemble Filter Wks for Geopiasical Data Assimilation

3. Getobserved valuandobservational error distribution

from observing system.

*
*e
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How an Ensemble Filter Wks for Geopiasical Data Assimilation

4. Findincrementfor each prior observation ensemble
(this is a scalar problem for uncorrelated observation errors).

N TN

< i | — - : — :

>y

(Note: Difference between
different flavors of ensent-
ble filters is primarily in

@bservation Increment. y

*
*
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How an Ensemble Filter Wks for Geopiasical Data Assimilation

5. Use ensemble samples of y and each state variable to linearly
regress observation increments onto state variable increments.

?
|

(Theory: impact of
observation increments on
each state variable can be
handled sequentially!

s 4 \_

*
*
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How an Ensemble Filter Wks for Geopiasical Data Assimilation

6. When all ensemble members for each state variable are updated,
have a new analysis. Integrate to time of next observation...
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Phase 3: Generalize to gegpltal models and obse&twons

Simple example: Lorenz-63 3-variable chaotic model.
Observation in red.

40 Prior ensemble in green.

e, SR T Observing all three state
ChEde®o G070 variables.

‘\‘ -
. \‘o\’.-' .
\“"0-
d e’
d: .
. " .t
. .
. » -
. .o . N
* R - o
e e . K
5.%% e s - . . ., .
Re . - W AT IR o e . T N
e ™ % S . .."::'\:,’.."’::':}. - ‘. 5'»,...-.: * .
. . . % S s ey VR § 3o d Serg T #
N R e S CINE I AL TF ¥ 20 o e s e
A A RS P AL SRR S PR
ALt . T, e . e 378w F LR RN . .
. K PPN 1 2% . ‘.,
. . wrte . . o
. R S, b LICTANE - S .
+ 0 . et P « S .
* t S D e g, » .t
. ‘e, * - ot .

ODbs. error variance = 4.0.

4 20-member ensembles.

20 -20
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Phase 3: Generalize to gegpltal models and obse&twons

Simple example: Lorenz-63 3-variable chaotic model.

Observation in red.

G

Prior ensemble in green.

20 -20
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Phase 3: Generalize to gegpltal models and obse&twons
Simple example: Lorenz-63 3-variable chaotic model.

Observation in red.

Prior ensemble in green.

.

R

-
.t
" .

e,

-
-

4

H

<
S
b,

Anderson: Ensemble Tutorial 88 4/22/05



Phase 3: Generalize to gegpltal models and obse&twons
Simple example: Lorenz-63 3-variable chaotic model.

Observation in red.

Prior ensemble in green.

.

R

-
.
" .

e,

-
-

4

H

<
S
b,
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Phase 3: Generalize to gegpltal models and obse&twons
Simple example: Lorenz-63 3-variable chaotic model.

Observation In red.

.

Prior ensemble in green.

Ensemble is passing through
unpredictable region.
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Phase 3: Generalize to gegpltal models and obse&twons
Simple example: Lorenz-63 3-variable chaotic model.
Observation in red.

Prior ensemble in green.
Part of ensemble heads for

one lobe, the rest for the
other.
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Phase 3: Generalize to gegpltal models and obse&twons

Simple example: Lorenz-63 3-variable chaotic model.
Observation in red.

Prior ensemble in green.
The prior is not linear here.

Standard regression might be
pretty bad.

Covariance inflation might
also be bad, pushing
ensemble off the attractor.
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Phase 3: Generalize to gegpltal models and obse&twons

Simple example: Lorenz-63 3-variable chaotic model.

= Observation in red.
Prior ensemble in green.
The prior is not linear here.
On the other hand...

20 Hard to contrive examples
this bad.

Behavior like this not
apparent in real assimilations.
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Some Error Sources in Ensemble Filters
3. ‘Gross’ Obs. Errors

2. h errors; s _ 4. Sampling Error;
Replresentateness '- L=~ "7 7" Gaussian Assumption
\ r 7
| *4@»
\ 1 1
\ : v y — - - Y

1. Model Error 5. Sampling Error;”
Assuming Linear
Statistical Relation
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Dealing Wth Ensemble Filter Errors

Fix 1, 2, 3 independently

'3. Gross Obs. Errors

HARD but ongoing.

5. Sampling Error,"
Assuming Linear
Statistical Relation

1. Model Efror

2. h errors; ’ 4. Sampling Error;
Representateness # = T =Gaussian Assumpti
1
. y
1 L
' A
\
.
* ‘ -— .y,

DnOften, ensemble filters...
1-4: Covariance inflation,
Increase prior uncertainty
to give obs more impact.

5. ‘Localization’: only let

obs. impact a set of

Anderson: Ensemble Tutorial 95

‘nearby’ state variables.
Often smoothly decrease

Impact to 0 as function of
distance.
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Model/Filter Error; Filter Dvergence and &fiance Inflation

1. History of observations and physical system => ‘true’ distribution.

Probability

—

O1
3
gy
C
]

3

5
5
O
TI

I
hO
I
I
N
I
 —
o

Anderson: Ensemble Tutorial 96 4/22/05



Model/Filter Error; Filter Dvergence and &fiance Inflation

1. History of observations and physical system => ‘true’ distribution.
2. Sampling error, some model errors lead to insufficient prior variance

Variance Deficient PDE ™,

] S — R T — S — :
5 "“TRUE" Prior PDF/ %
@] : ' ; :

o SN AR S 1
E 0.5 : '
ek e e o e

94 -3 —2 -1 0

3. Can lead to ‘filter divergence’: prior is too confident, obs. ignored
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Model/Filter Error; Filter Dvergence and &fiance Inflation

1. History of observations and physical system => ‘true’ distribution.
2. Sampling error, some model errors lead to insufficient prior variance

Variance Deficient PDE ™,

| S — R T — S — :
5 "“TRUE" Prior PDF/ %
Q : ' : ' :

o SN AR S 1
E 0.5 : '
ek e e o e

94 -3 —2 -1 0

3. Naive solution is Variance inflation: just increase spread of prior
4. For ensemble memberirh,flate(>ﬁ) = JX(Xi —X) + X
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Model/Filter Error; Filter Dvergence and &fiance Inflation

1. History of observations and physical system => ‘true’ distribution.

0.8

"TRUE" Prior PDF

Probability
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Model/Filter Error; Filter Dvergence and &fiance Inflation

1. History of observations and physical system => ‘true’ distribution.
2. Most model errors also lead to erroneous shift in entire distribution.

0-8—TRUE Prior PDF Error in Mean (from model)
2\0.6' """""""""""""""""""""""""""""""""""""""" "," """" \; """"" R -
O Y AN A a R -
e " ‘\
x ‘
Q.2F o N ""'-l """"""""""""""" ‘\‘ """"""""""""""" -
0 5 ek oy e
-4 -2 0) 2 4

3. Again, prior can be viewed as being TOO CERTAIN

Anderson: Ensemble Tutorial 100 4/22/05



Model/Filter Error; Filter Dvergence and &fiance Inflation

1. History of observations and physical system => ‘true’ distribution.
2. Most model errors also lead to erroneous shift in entire distribution.

0.8

"TRUE" Prior PDF Error in Mean (from model)

s N

O
o))

Probability
o
N

O
N

3. Again, prior can be viewed as being TOO CERTAIN

4. Inflating can ameliorate this
5. Obviously, if we knew E(error), we'd correct for it directly
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Physical Space &fiance Inflation

Inflate all state variables by same amount before assimilation

Capabillities:
1. Can be very effective for a variety of models.
2. Can maintain linear balances.
3. Stays on local flat manifolds.
4. Simple and inexpensive.

Liabilities:
1. State variables not constrained by observations can ‘blow up’.
For instance unobserved regions near the top of AGCMs.

2. Magnitude oA normally selected by trial and error.
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Physical space a@riance inflation in Lorenz-63

Observation outside prior: danger of filter divergence
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20 Prior ensemble in green.
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Physical space a@riance inflation in Lorenz-63

After inflating, observation is in prior cloud: filter divergence avoided
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Physical space a@riance inflation in Lorenz-63

Prior distribution is significantly ‘curved’
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Physical space a@riance inflation in Lorenz-63

Inflated prior outside attractor. Posterior will also be off attractor.
. Can lead to transient off-
ST T attractor behavior or...
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Variance inflation for Obseawions: An Adaptie Error Dlerant Filter

1. For observed variable, have estimate of prior-observed inconsisten:
0.8

Prior PDF _  Obs. Likelihgod

O
o

Probability
o
D

4/22/05

107

Anderson: Ensemble Tutorial



Variance inflation for Obseawions: An Adaptie Error Dlerant Filter

1. For observed variable, have estimate of prior-observed inconsisten:

0.8 ! ! !
Prior PDF _ - Obs. Likelihgod
060 /NN
3 Actual 4.714 SDs :
S04F ) : — L -
DE_’ Expected Sepaypation
0.2 ) SiDr— \ o — S.Do\ :
94 - o 0 2 4

. . 2 2
2. Expected(prior mean - obs.ervatlon)/erprior + Ogps

Assumes that prior and observation are supposed to be unbiased.
Is it model error or random chance?
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Variance inflation for Obseawions: An Adaptie Error Dlerant Filter

1. For observed variable, have estimate of prior-observed inconsisten:

0.8 ! ! !
Prior PDF _ - Obs. Likelihgod

2\0.6' """""""""""" 'I',"' """ \\“ """"""""""""""""" N\ .
3 : Actual 3?.698 SDs
804 e e -
O ' Expected Sef ratlon
o 0.2} '”ﬂa.t.l.S.D.. ............... ‘.\. e —_— S Do\ -

94 o R 0 - 2 4

2
2. Expected(prior mean - observatlon)/gpnor + O0,ps
3. Inflating increases expected separation.
Increases ‘apparent’ consistency between prior and observation.
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Variance inflation for Obseawions: An Adaptie Error Dlerant Filter

1. For observed variable, have estimate of prior-observed inconsisten:

0.8 ! ! !
Prior PDF _ - Obs. Likelihgod

2\0.6' """""""""""" 'I',"' """ \\“ """"""""""""""""" N\
3 : Actual 3?.698 SDs
S04 I S
O ' Expected Sef ratlon
o 0.2} '”ﬂa.t.l.S.D. ............... ‘.\. e —_— S Do\ -

94 o R 0 - 2 4

2
Distance, D, from prior mean y to obsnig, Jmp”or 0o pe = N(O, )

Prob. y,is observed giveh: p(y,|\) = (21 )" “exp(-D*/ 26
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Variance inflation for Obseawions: An Adaptie Error Dlerant Filter

Use Bayesian statistics to get estimate of inflation faktor,

Prior PDF.___ Obs. Likelihood

0 1 2 3 4 5 6
Obs. Space Inflation Factor: A

Assume some form for prior distribution fd(Gaussian, gamma).
(Could assume other type of distribution or even use ensemble).
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Variance inflation for Obseawions: An Adaptie Error Dlerant Filter
Use Bayesian statistics to get estimate of inflation faktor,

Prior PDF.___ Obs. Likelihood
0.6 e RATEERE 2 T N S - We've assumed a
0ab I O Ny S S N S - form for prior PDF
0.2F il o g N p()\,tk\Yt ).
0 H‘—’?' : S e k-1
-1 0 1 2 3 4
Observation: y
2 N - S :
Prior A PDF  Recall thatp(y, 1)
I ------------------ ------------------- ------------------ ------------------ can be evaluated
? ? ? 5 : - from normal PDF.
% 1 2 3 4 5 6

Obs. Space Inflation Factor: A

p()\,tk|Ytk) = p(yk‘}\)p()\,tk‘Y )/normalization

T _1
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Variance inflation for Obseawions: An Adaptie Error Dlerant Filter
Use Bayesian statistics to get estimate of inflation faktor,
' ' Obs Likelihood

Get p(yk‘)\ 0.75)
from normal PDF.

;1 Multiply by

2r S P S S """"""""" """"""""""" 5 p()\ O75tk‘Ytk 1
~to get

L Y A U S PN =0.754,]Y

o *T 2 3 4 5 6

Obs. Space Inflation Factor: A

p()\,tk|Ytk) = p(yk‘)\)p()\,tk‘Ytk 1)/normalization
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Variance inflation for Obseawions: An Adaptie Error Dlerant Filter
Use Bayesian statistics to get estimate of inflation faktor,

: . Obs. Likelihood
0.6fInflated P-rlor-}\--“-1--5----»--’;-------’-s- --------- N I

Get p(yk‘)\ 1.50)

from normal PDF.

0.2 :
o _ 4|wmﬂmyby
2r By """"""""" o S A """"""""""" 5 p()\ = 1. 5Q tk‘Ytk 1

: § : : | 1o get
v o\ e o e PN =1504Y, )

0 1 2 3 4 5 6
Obs. Space Inflation Factor: A

p()\,tk|Ytk) = p(yk‘)\)p()\,tk‘Ytk 1)/normalization
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Variance inflation for Obseawions: An Adaptie Error Dlerant Filter

Use Bayesian statistics to get estimate of inflation faktor,
' ' Obs Likelihood

0.2 |
o ;1 Multiply by

2r """"""" """"""""" o S """"""""" """"""""""" 5 p()\ 225tk‘Ytk 1
-~ to get

Lpe oo PN =2.25 Y

% 5 4 5 6

Obs. Space Inflation Factor: A

p()\,tk|Ytk) = p(yk‘)\)p()\,tk‘Ytk 1)/normalization
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Variance inflation for Obseawions: An Adaptie Error Dlerant Filter
Use Bayesian statistics to get estimate of inflation faktor,

S Obs. leellhood :
0.6f ey I N G ~ Repeat for a range
0.4 TN i SR O N SRR - of values ofA.
0.2F o SN z
N L f - Now must get pos-
-1 0 1 2 3 4 terior in same form
Observation: y _
D e T q— S ~ as prior.
Prior A PDF : : :
ey Podterior - - -
. . Likel_ihoodyobserved inen)\
. N ; ; ;
0 1 2 3 4 5 6

Obs. Space Inflation Factor: A

p()\,tk|Ytk) = p(yk‘}\)p()\,tk‘Ytk 1)/normalization
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Variance inflation for Obseawions: An Adaptie Error Dlerant Filter
Use Bayesian statistics to get estimate of inflation faktor,

z - Obs. Likelihood ;
Q.6 e, R N TR S - Very little informa-
O.4p el v N T ~ tion aboutA in a
ook AN S ST N A ~ single observation.
0 : - - :

-1 4 Posterior and prior

Observation: y o
D ~are very similar.

Prior A PDF

b e N ~ Normalized poste-
Posterior ~ rior indistinguish-

/ y \ able from prior.

% 2

Obs. Space Inflation Factor: A

p()\,tk|Ytk) = p(yk‘}\)p()\,tk‘Ytk l)/normalization
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Variance inflation for Obseawions: An Adaptie Error Dlerant Filter
Use Bayesian statistics to get estimate of inflation faktor,

: S Obs leellhood :

Q.6 A SRV N Very little informa-
Q.4F s ------------ P --------------- “ ---------------------- ; tion aboufA in a
0.2t S AN single observation.

0 === ' i . .

-1 0 1 2 3 4 Posterior and prior

Observation: y ..
~are very similar.

).OLf A Posterior — Prior TS

N -~ Difference shows
- slight shift to larger
JOLp o T Max density shifted to right - yvalues of\.

Obs. Space Inflation Factor: A

p()\,tk|Ytk) = p(yk‘}\)p()\,tk‘Ytk l)/normalization
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Variance inflation for Obseawions: An Adaptie Error Dlerant Filter
Use Bayesian statistics to get estimate of inflation faktor,

S Obs. leellhood :
0.6 S SR R N S ~ One option is to use
0.4 TN i NG S 5 - Gaussian prior for
1J7] SRS S A NISHD: NS A
9 0 1 2 3

Observation: y 4 Select max of pos-
' ~ terior as mean of

Find Max by search ___Prior A PDF - updated Gaussian.
b T N
- Do afit for updated
/ ) \ standard deviation.
0

2
Obs. Space Inflation Factor: A

p()\,tk|Ytk) = p(yk‘}\)p()\,tk‘Ytk 1)/normalization
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Obsenation Space Computations with AdagtiError Correction

0-6 ! ! !

o
N

Probability

O
N

o 2 0 2 4
1. Compute updated inflation distributigo(A, tk|Ytk)
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Obsenation Space Computations with AdagtiError Correction

0.6

o
N

Probability

O
N

1. Compute updated inflation distributigo(A, tk|Ytk)

2. Inflate ensemble using mean of updatetistribution.
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Obsenation Space Computations with AdagtiError Correction

0.6

o
N

Probability
o
N

1. Compute updated inflation distributigo(A, tk|Ytk)

2. Inflate ensemble using mean of updatetistribution.
3. Compute posterior for y using inflated prior.
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Obsenation Space Computations with AdagtiError Correction

0.6

o
N

Probability

O
N

1. Compute updated inflation distributigo(A, tk|Ytk)

2. Inflate ensemble using mean of updatetistribution.
3. Compute posterior for y using inflated prior.
4. Compute increments from ORIGINAL prior ensemble.
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Phase 4. Quick look at a real atmospheric application

Results from CAM Assimilation: Januar2003

Model:
CAM 3.0 T42L26
U,V, T, Q and PS state variables impacted by observations.
Land model (CLM 2.0) not impacted by observations.
Climatological SSTs.

Assimilation / Prediction Experiments:
80 member ensemble divided into 4 equal groups.
Initialized from a climatological distribution (huge spread).
Initial tests for January, 2003.
Uses most observations used in reanalysis

(Radiosondes, ACARS, Satellite Winds..., no surface obs.).

Assimilated every 6 hours; +/- 1.5 hour window for obs.
Adaptive error correction algorithm with fixed variance
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NCEP reanalyses, 500mb GPH, Jan 08 00Z

Geopotential height agpm
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Southern Hemisphere Temperature: Bias and RMSE

Bias: Southern Hemisphere
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RMS Error: Southern Hemisphere
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Pressure (hPa)
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RMS Error: Tropics
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North America Temperature: Bias and RMSE
RMS Error: North America

Bias: North America
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Northern Hemisphere Wind: Bias and RMSE

Bias: Northern Hemisphere
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Southern Hemisphere Wind: Bias and RMSE
RMS Error: Southern Hemisphere

Bias: Southern Hemisphere
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Tropical Wind: Bias and RMSE

Bias: Tropics RMS Error: Tropics
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Conclusions

1. It Is easy to incorporate a model in an ensemble filter.

2. Naive use of ensemble filters cannot compete with variational.

3. Algorithms to deal with variance loss are available.

4. Algorithms to deal with systematic error under development.

5. Hard part remaining is dealing with nasty, dirty observational data.
6. Ensemble algorithms are now nearly competitive with variational.

/. Dont believe ary comparatre results that arenfrom same system.
QC, plotting details, who knows what else come into play.
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Data Assimilation Researcle3tbed ([ART)

Software to do everything here (and more) is in DART.
Requires F90 compiler, Matlab.

Available from www.image.ucar.edu/DAI/DART/.
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DART compliant models (lgest setwer with assim system?)

Many low-order models (Lorenz63, L84, L96, L2004,...)
Global 2-level PE model (from NOAA/CDC)

. CGD’s CAM 2.0 & 3.0 (global spectral model)

GFDL FMS B-grid GCM (global grid point model)

MIT GCM (from Jim Hansen; configured for annulus)

. WRF model

NCEP GFS (assisted by NOAA/CDC)

GFDL MOM3/4 ocean model

. ACD’s ROSE model (upper atmosphere with chemistry)

©ONOUTAWNE

This allows for a hierarchical approach to filter development.
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DART compliant erward Operators and Datasets

Many linear and non-linear forward operators for low-order models.
U, V, T, Ps, Q, for realistic models.

Radar reflectivity, GPS refractivity for realistic models.

Can ingest observations from reanalysis or operational BUFR files.

Can create synthetic (perfect model) observations for any of these.
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